Deep Residual Neural Network for Efficient Traffic Sign Detection
نویسندگان
چکیده
منابع مشابه
Multi-column deep neural network for traffic sign classification
We describe the approach that won the final phase of the German traffic sign recognition benchmark. Our method is the only one that achieved a better-than-human recognition rate of 99.46%. We use a fast, fully parameterizable GPU implementation of a Deep Neural Network (DNN) that does not require careful design of pre-wired feature extractors, which are rather learned in a supervised way. Combi...
متن کاملKnowledge-based Recurrent Attentive Neural Network for Traffic Sign Detection
Accurate Traffic Sign Detection (TSD) can help drivers make better decision according to the traffic regulations. TSD, regarded as a typical small object detection problem in some way, is fundamental in the field of self-driving and advanced driver assistance systems. However, small object detection is still an open question. In this paper, we proposed a human brain inspired network to handle t...
متن کاملBuilding Robust Deep Neural Networks for Road Sign Detection
Deep Neural Networks are built to generalize outside of training set in mind by using techniques such as regularization, early stopping and dropout. But considerations to make them more resilient to adversarial examples are rarely taken. As deep neural networks become more prevalent in mission critical and real time systems, miscreants start to attack them by intentionally making deep neural ne...
متن کاملDeepTrend: A Deep Hierarchical Neural Network for Traffic Flow Prediction
In this paper, we consider the temporal pattern in traffic flow time series, and implement a deep learning model for traffic flow prediction. Detrending based methods decompose original flow series into trend and residual series, in which trend describes the fixed temporal pattern in traffic flow and residual series is used for prediction. Inspired by the detrending method, we propose DeepTrend...
متن کاملAutomatic Traffic Sign Detection
This work use basic image processing technique to automatically recognize two different traffic signs (stop sign and yield sign) in an image. The image is first thresholded on RBG domain to separate out the regions with red color, which is those traffic signs usually have, then region mapping is done on the remaining regions, the regions that are either too small and too large are removed since...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of International Conference on Artificial Life and Robotics
سال: 2023
ISSN: ['2188-7829', '2435-9157']
DOI: https://doi.org/10.5954/icarob.2023.os25-7